Arrangement of Electrons in the Atom

Question 1 (2016 - Section b - Question 4)

ground state: n = 1 / lowest (first, nearest nucleus) energy level / 1s / minimum (i) DISTING: amount of energy / stable state // excited states: n > 1 / n = 2, 3, etc / n = 2, etc / 2s, 2p, 3s, etc / n = 2 and higher / energies (energy levels) other than n = 1 / higher energies / higher energy (unstable) levels (2×3) [For excited states accept 'any (a, some) higher energy level' but not 'the higher energy level'.] [Allow a diagram with three concentric circles around a nucleus, with the innermost circle labelled ground state for (6).] (ii) HOW: add heat {energy, electricity, light, electromagnetic radiation} (3)(iii) EXPLAIN: [Information must be given verbally.] excited electron falls back from n = 3, 4, etc / excited electron falls back from n = 3, etc / excited electron falls back from n > 2 ($E_{n>2}$) / excited electron falls from higher energy levels // to second shell (energy level) / to $n = 2 / to E_2 //$ the energy lost is emitted as light {electromagnetic radiation (energy)} of different frequencies (colours, wavelengths) / the energy lost is emitted as different (discrete) hf (hv, photon(s)) / different electron transitions correspond to different lines (colours, frequencies) [Allow two correct examples of Balmer series electron energy changes, e.g. $E_3 - E_2$ and $E_6 - E_2$, for the first two points.] Balmer series WHAT: no corresponding electron transition (energy loss) / no corresponding excited state / (iv) EXPLAIN: electron cannot exist (be) between energy levels / electron cannot exist (be) between electron transition cannot originate from (terminate) between energy levels / electron transition cannot originate from between n=3 and n=4 / electron transition cannot terminate between n = 3 and n = 2 $E_n - E_2 \neq hf(hv)$ for yellow / no whole (natural, integer) number solution for n in $E_n - E_2 = hf(hv)$ for yellow (3)

(b)	DESCRIBE:		
(0)	DESCRIBE:		

Method 1	Method 2	Method 3	
clean a platinum (nichrome) wire* (rod, probe) in concentrated hydrochloric acid (HCl)	soak wood (splint, stick) overnight in water / use damp (wet) wood (splint, stick)	prepare a solution of the given salt in water and ethanol (propanol)	(3)
dip rod in salt and hold salt in hot (blue) part of Bunsen flame	dip splint (stick) in salt and hold salt in hot (blue) part of Bunsen flame	spray solution onto (into) hot (blue) part of Bunsen flame	(3)
red (crimson) colour is a positive result for lithium	red (crimson) colour is a positive result for lithium	red (crimson) colour is a positive result for lithium	(3)

^{*[}Allow 'inoculating loop', or 'spatula' for 'platinum wire'.]
[Clear labelled diagram for some or all points acceptable.]

(c) DEFINE: space (volume, region) around nucleus of an atom //

where an electron is likely to be found / where there is a relatively high probability (possibility) of finding an electron

['Area' around nucleus not acceptable.]

or

approximate solution //

to a Schrödinger wave equation

 (2×3)

 (3×3)

DISTGINGUISH:

2p sublevel consists (is made up) of three 2p orbitals of equal energy /

2p sublevel accommodates (has, holds) no more than 6 electrons but each of the 2p

orbitals accommodates {has, holds} no more than 2 of these electrons (3)

WRITE: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ (4)

[Allow subscripts instead of superscripts.]

[Arrows to represent numbers of electrons acceptable but sublevel symbols must

be given.]

EXPLAIN: 4s sublevel lower in energy than the 3d / electrons fill the 4s sublevel before the 3d

(4)

(d) EXPLAIN: in the ground state the hydrogen electron occupies the lowest available energy level //

the electron can jump (move, become excited) to a higher energy level (state) if it receives (absorbs) a certain amount of energy (light, heat, electricity, a photon) //

excited (higher energy) state unstable (temporary) //

electron falls back to a lower level

energy emitted (given out) as photon (light of definite frequency, light of definite wavelength, hf, hv) thus giving rise to a spectrum /

energy emitted (hf, hv) corresponds to (=) difference between the two energy levels

ANY THREE: (3×3)

 $(E_2 - E_1)$ thus giving rise to a line on the spectrum $/E_2 - E_1 = hf(hv)$ (3) [Marks not awarded wherever 'atom' is incorrectly used instead of 'electron'.]

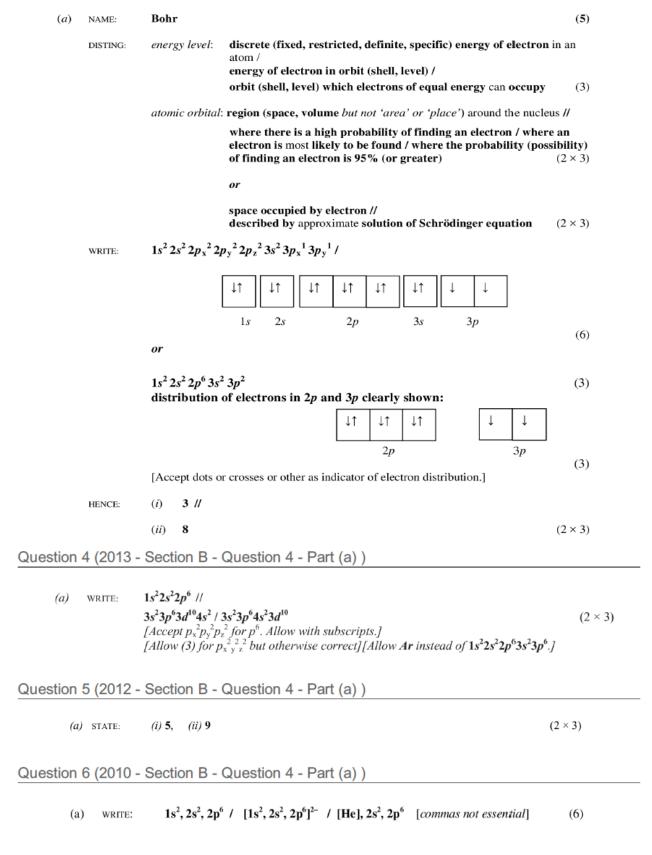
[Some marks, maximum (6), available from a good labelled diagram.]

(e) SUGGEST: copper ['Barium' or 'boron' acceptable.] (3)

(f) WRITE: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 / [Ar]4s^2$ (5)

[Subscripts instead of superscripts acceptable.]

[Arrows to represent numbers of electrons acceptable but orbital symbols must be given.]


GIVE: energy (distance to nucleus) of 2s electron less than 3s/ nuclear attraction for 2s electron greater than 3s/

2s electron less shielded (screened) than 3s from nucleus /

energy for ionisation (removal of electron) of (from) 2s greater than for 3s /

probability distribution (volume, size) of 2s less than 3s (3)

[Corresponding statements given with regard to 3s are equally acceptable.]

(a)	STATE:	Small // indivisible // identical atomic mass (weight) for particular element (2×4)
(b)	NAME:	(i): Thomson // (ii): Rutherford // (iii): Millikan (3 × 3)
(c)	OUTLIN	The electron in a hydrogen atom occupies (restricted to) fixed energy levels (energy values, discrete energies) //
		an electron in an energy level does not radiate energy //
		electron occupies lowest energy levels available / electron occupies ground state //
		the electron can move (become excited) to a higher energy level if it receives an amount of energy (photon of energy) //
		the photon (energy) must be exactly equal to the energy difference between the ground state (a lower level) and a higher energy level (excited state) //
		the electron in an excited state (a higher level) is unstable //
		the excited electron falls back to a lower energy level //
		emitting the excess energy in the form of a photon of light (hf) / emitting light of a definite frequency (wavelength) / emitting light according to $E_2 - E_1 = hf(h\nu)$ [Accept 'quantum' for 'photon' and 'shell' for 'level.'] ANY FOUR: $(6 + 3 \times 3)$
(d)	STATE:	Didn't work for higher elements / only worked for hydrogen / doesn't work for multi electron systems //
		Did not take wave-particle duality into account //
		Did not allow for uncertainty (probability) //
		Did not explain higher resolution spectra / didn't explain discovery of sublevels //
		Could not account for the existence of orbitals / Zeeman effect / splitting of spectral lines $({\tt ANY}\ 2\times 3)$
DEFIN	E:	Region (space) around the nucleus of an atom // where there is a 99% (high) probability of finding an electron / where electron most likely to be found //
		space occupied by electron // described by solution of Schrödinger equation (2×3)
DRAW	/:	Dumbbell drawn (3)
		∞ ∞
STATE	Б:	two/2 (3)

(e)

(c) STATE:	not possible to measure the exact position (location) and momentum (energy, velocity) electron in atom simultaneously (at same time)	of (3) (3)
Question 9 (20	009 - Section A - Question 3)	
(a) DESCRIBE	Introduce salt into (on, in) flame of bunsen burner using platinum (nichrome) wire (probe) / using soaked (dipped) splint (lollipop stick)* sodium (Na) gives orange (yellow) flame potassium (K) gives lilac (violet, purple**) flame [**Do not allow 'red' or 'pink'] [*Allow "inoculating loop" or "spatula"]	(2) (3) (3) (3)
(b) which:	KCI / potassium chloride / the chloride (CI) / [Not "chlorine ion"]	(3)
WHAT:	white precipitate (ppt) soluble in ammonia solution	(3)
(c) OTHER:	iron(II) sulfate / ferrous sulfate / FeSO ₄ solution	(3)
WHICH:	KNO ₃ / potassium nitrate / the nitrate ion (NO ₃)	(3)
(d) DESCRIBE	To salt solution add ammonium molybdate [(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O, (NH ₄) ₂ MoO ₄] solution and a few drops of concentrated nitric acid and warm gently yellow precipitate (ppt) formed [The (3)s for molybdate and nitric acid may be awarded in either order, but the (3) for yellow precipitate only to be awarded when molybdate and/or nitric acid do <u>not</u> come after it.]	(3) (3) (3)
(e) WRITE:	$Na_2SO_3(.7H_2O) + BaCl_2 \rightarrow BaSO_3 + 2NaCl (+ 7H_2O) /$	
	$Na_2SO_4(.10H_2O) + BaCl_2 \rightarrow BaSO_4 + 2NaCl (+ 10H_2O) /$	
	$SO_3^{2-} + Ba^{2+} \rightarrow BaSO_3 / SO_4^{2-} + Ba^{2+} \rightarrow BaSO_4$ formulas (3) balancing	NG (3)
	[Accept BaSO ₃ .7H ₂ O & BaSO ₄ .10H ₂ O on the right. If water molecules on left but not on give (3) only – for formulas. Accept a mixture of ions and full formulas, if correct.]	right,
(f) SUGGEST:	add dilute acid carbon dioxide (CO ₂) evolved / gas turns limewater milky OR add magnesium sulfate (MgSO ₄) solution	(3) (3)
	no precipitate (ppt) observed	(3)
	[If none of these marks are given allow (3) for identifying NaHCO3,, HCO3]	