Chemical Equilibrium Marking Scheme

2017 Q7

QUESTION 7

(a) WHAT: state in which rate of forward reaction is equal to rate of reverse reaction /

state reached at which concentrations of reactants and products are constant (5)

[Allow $r_f = r_r$ or $r_f = r_b$.]

why: both reaction(s) continue(s) / reaction doesn't stop (3)

STATE: systems in (at) equilibrium //

react to oppose (minimise, relieve) applied stress(es) {disturbance(s)} (2×3)

[Instead of 'stress(es){disturbance(s)}' accept 'change in temperature, pressure or number of moles (concentrations)' if all three {temperature, pressure and moles (concentrations)}

are given.]

(b) WRITE:
$$K_c = \frac{[\mathbf{NO_2}]^2}{[\mathbf{N_2O_4}]} \tag{6}$$

[Do not accept inverted expression.]

(c) CALCULATE: 0.05 mol per litre N₂O₄ and 0.1 mol per litre NO₂ (18)

Candidate takes 2x moles/I NO2 at equilibrium

 $N_2O_4(g) \Leftrightarrow 2NO_2(g)$

Start: 1 mol 0 mol 0 mol 0.1 mol/l 0 mol/l (3)

(1)

Equil: $0.1-x \mod l$ 2x $\mod l$ (3)

$$\frac{4x^2}{0.1-x} = 0.2 / \frac{(2x)^2}{0.1-x} = 0.2 /$$

$$4x^2 + 0.2x - 0.02 = 0 / 2x^2 + 0.1x - 0.01 = 0 /$$

$$x^2 + 0.05x - 0.005 = 0$$

$$\chi = \frac{-(0.2) \pm \sqrt{(0.2)^2 - 4(4)(-0.02)}}{2 \times 4} /$$

$$x = \frac{-(0.1) \pm \sqrt{(0.1)^2 - 2(-0.01)}}{2 \times 2} /$$

$$\chi = \frac{-(0.05) \pm \sqrt{(0.05)^2 - 4(-0.005)}}{2}$$

or
$$(2x + 0.2)(2x - 0.1) = 0 / (x + 0.1)(2x - 0.1) = 0 / (x + 0.1)(x - 0.05) = 0$$

$$x = 0.05 \text{ mol/l} \tag{3}$$

$$[N_2O_4] = 0.1 - x = 0.05 \text{ mol/l}$$
 (3)

 $[NO_2]$ = 2x = 0.1 mol/l (3)

Candidate takes y moles/I NO2 at equilibrium

 N_2O_4 (g) \Rightarrow $2NO_2$ (g)

Start: 1 mol 0 mol

Equil:
$$0.1 - \frac{1}{2}y \mod l$$
 $y \mod l$ (3)

$$\frac{y^2}{0.1 - \frac{1}{2}v} = 0.2 /$$

$$y^2 + 0.1y - 0.02 = 0$$
 (3)

$$y = \frac{-(0.1) \pm \sqrt{(0.1)^2 - 4(-0.02)}}{2}$$

$$or(y+0.2)(y-0.1)=0$$

$$y = 0.1 \text{ mol/l} \tag{3}$$

$$[N_2O_4] = 0.1 - \frac{1}{2}y = 0.05 \text{ mol/l}$$
 (3)

$$[NO_2] = y = 0.1 \text{ mol/l}$$
 (3)

Candidate working with 2x moles NO₂ at equilibrium

 $N_2O_{4(q)} \Leftrightarrow 2NO_{2(q)}$

Start: 1 mol 0 mol

Equil: 1-x mol 2x mol (3)

Equil: $(1-x) \div 10 \text{ mol/l} \quad 2x \div 10 \text{ mol/l}$ (3)

 $\frac{4x^2 \div 100}{(1-x) \div 10} = 0.2 \quad / \frac{(\frac{2x}{10})^2}{(\frac{1-x}{10})} = 0.2 / \frac{4x^2}{(1-x)} = 2 /$

 $4x^2 + 2x - 2 = 0$

 $2x^2 + x - 1 = 0 / x^2 + 0.5x - 0.5 = 0$ (3)

 $x = \frac{-(2) \pm \sqrt{(2)^2 - 4(4)(-2)}}{2 \times 4} /$

 $x = \frac{-(1) \pm \sqrt{(1)^2 - 4(2)(-1)}}{2 \times 2} /$

 $x = \frac{-(0.5) \pm \sqrt{(0.5)^2 - 4(-0.5)}}{2}$

or (2x+2)(2x-1) = 0 / (2x-1)(x+1) = 0 / (x+1)(x-0.5) = 0

 $X = 0.5 \text{ mol} \tag{3}$

 $[N_2O_4]$ = $(1-x) \div 10 = 0.05 \text{ mol/l}$ (3)

 $[NO_2] = 2x \div 10 = 0.1 \text{ mol/l}$ (3)

Candidate working with y moles NO₂ at equilibrium

 $N_2O_4_{(g)} \Leftrightarrow 2NO_2_{(g)}$

Start: 1 mol 0 mol

Equil: $1 - \frac{1}{2}y$ mol y mol (3)

Equil: $(1 - \frac{1}{2}y) \div 10 \text{ mol/l}$ $y \div 10 \text{ mol/l}$ (3)

 $\frac{y^2 \div 100}{(1 - \frac{1}{2}y) \div 10} = 0.2 / \frac{y^2}{1 - \frac{1}{2}y} = 2 /$

 $y^2 + y - 2 = 0 (3)$

 $y = \frac{-(1) \pm \sqrt{1^2 - 4(-2)}}{2}$

or(y+2)(y-1)=0

y = 1 mol (3)

 $[N_2O_4] = (1 - \frac{1}{2}y) \div 10 = 0.05 \text{ mol/l} (3)$

 $[NO_2] = y \div 10 = 0.1 \text{ mol/l}$ (3)

[Chemically impossible solution of correct quadratic equation also used to find concentrations, deduct (1) mark.]
[Do not award last (6) marks for quadratic equation with two chemically impossible solutions.]

[Do not allow mixing and matching of marks within boxes.]

[Where inverted Kc expression used, do not award (3) marks for setting up quadratic.]

(d) EXPLAIN: low(er) temperature (decrease in temperature) favours (results in, produces more)
N₂O₄ {left side, reverse, exothermic (heat producing) reaction} /

high(er) temperature would favour (result in, produce more) NO₂ {right side, forward, endothermic (heat absorbing) reaction}

DEDUCE: decomposition endothermic (3)

[Linkage here. EXPLAIN marks only available if DEDUCE marks awarded but order of answering parts unimportant]

parts animportant

(e) would: no change (effect) / none (3)

EXPLAIN: K_c constant at given temperature even if concentrations change / only change in temperature will result in change in K_c (3)

[WOULD and EXPLAIN linked; order of answering parts unimportant; WOULD marks may be awarded if correct response to WOULD is inferred in correct EXPLAIN STATEMENT.]

(3)

QUESTION 7

(a) STATE:

systems in (at) equilibrium //

react to **oppose** (minimise, relieve) applied stress(es) {disturbance(s)} (3+2) [Instead of 'stress(es) {disturbances}' accept 'change in temperature, pressure or number of moles (concentrations)' if all three {temperature, pressure and moles (concentrations)} are

given.]

PREDICT: (i) low temperature //

[Allow 'decrease in temperature'.]

EXPLAIN: favours (results in, produces more) exothermic (heat producing) reaction /

high temperature would favour (result in, produce more)

endothermic (heat absorbing) reaction / favours forward reaction which is exothermic / does not favour reverse reaction which is endothermic (2×3)

PREDICT: (ii) high pressure //

[Allow 'increase in pressure'.]

EXPLAIN: favours (results in, produces) fewer moles (molecules) / favours smaller volume / low pressure would favour (result in, produce) more moles (molecules) / favours greater volume / favours fewer moles (molecules) on right / favours smaller

volume on right / does not favour more moles (molecules) on left / does not favour greater volume on left /

[EXPLAIN marks only available if PREDICT marks awarded.]

EXPLAIN: reaction (rate) too slow (uneconomical, costly) at low temperatures (3)

(b) STATE: no effect / none (3)

in presence of catalyst sulfur trioxide (SO₃) produced and used up at same rate / catalyst alters (speeds up) rate of forward and reverse reactions equally (3)

 (2×3)

(c) WRITE:
$$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$
 (6)

CALCULATE: 196000 / 1.96 × 105 (18)

Initially: moles
$$SO_2 = \frac{96}{64^*} = 3/2$$
 (1.5) and moles $O_2 = \frac{24}{32^*} = 3/4$ (0.75)

At equilibrium: moles
$$SO_3 = \frac{112}{80^*} = 7/5$$
 (1.4)

 $2SO_2 + O_2 \Leftarrow 2SO_3$ $2SO_2 +$

0.1 (3) **0.05** (3) Initial M: Equil mol:

0.002 Equil M: 0.001 0.028

Divide by 50. (3)

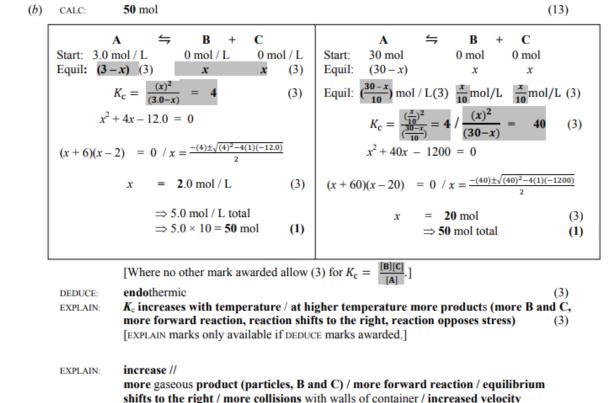
2SO₃0.015

0.03 0.028 Equil M: Divide by 50. (3)

Equil M: 0.002 (3) 0.001 (3) 0.028

$$K_{\rm c} = \frac{(0.028)^2}{(0.002)^2(0.001)} = 196000 / 1.96 \times 10^5$$
 (3)

[*Addition must be shown for error to be treated as slip.]


[Where Kc incorrect, e.g. inverted, allow consequential marks for calculation – up to a maximum of 15 marks.]

$2SO_2 + O_2 = 2SO_3$						
Start (moles):	$\frac{\frac{96}{64^*}}{3/2(1.5)}$	$\frac{24}{32^{++}} =$ 3/4 (0.75)		(3)		
Equil (moles):			$\frac{112}{80\cdots} = 7/5 \ (1.4)$	(3)		
Equil (moles):	(1.5-2x)	(0.75 - x)	2x = 1.4	x = 0.7		
Equil (moles):	0.1	0.05	1.4	(2 × 3)		
Equil (mol/L):	0.1 ÷ 50 = 0.002	0.05 ÷ 50 = 0.001	1.4 ÷ 50 = 0.028	Divide by 50. (3)		
$K_{\rm c} = \frac{(0.028)^2}{(0.002)^2(0.001)} = 196000 / 1.96 \times 10^5$ (3)						

$$K_{\rm c} = \frac{(0.028)^2}{(0.002)^2(0.001)} = 196000 / 1.96 \times 10^5$$
 (3)

	$2SO_2$	+ O ₂	\Rightarrow 2SO ₃	
Start (moles):	$\frac{96}{64^*} = \frac{3}{2} / 1.5$	$\frac{\frac{24}{32^{**}} = \frac{3}{4}}{0.75}$		(3)
Equil (moles):			$\frac{112}{80^{***}} = \frac{7}{5}/=$ 1.4	(3)
Start	1.5 ÷ 50 = 0.03	0.75 ÷ 50 = 0.015	0	Divide by 50.
(mol/L):			$1.4 \div 50 = 0.028$	(3)
Equil (mol/L):	(0.03-2x)	(0.015 – x)	2x = 0.028	x = 0.014
Equil (mol/L):	0.002	0.001	0.028	(2 × 3)

$$K_{\rm c} = \frac{(0.028)^2}{(0.002)^2(0.001)} = 196000 / 1.96 \times 10^5$$
 (3)

(energy) of gaseous molecules (particles) / then (followed by, resulting in) bringing

about of decrease {reverse, shift backward, shift left, shift to reactant(s),

[Second (3) only available if first (3) is awarded.]

shift to A}

 (2×3)