Radioactivity

Question 1 (2016 - Question 10 - Part c)

(c) (i) WHAT: atoms with same atomic number (Z) / atoms with same number of protons / atoms of same (an) element //

having different mass numbers (A) / having different numbers of neutrons (2×3)

(3)

WHAT: isotope (atom) with unstable nucleus / nucleus (isotope) spontaneously decays

(decomposes, emits radiation, emits alpha, beta and gamma rays) / radioactive isotope

DEFINE: time taken //

for half the sample to decay (decompose) / for activity to reduce by (to) a half (2×2)

(ii) COMPLETE: $^{222}_{86}$ Rn // $^{4}_{2}$ He (2 × 3)

(iii) HOW 7.5×10^{18} atoms of radium-223 (6)

 $\frac{1 \times 10^{-4} \times 12.5}{100} = 1.25 \times 10^{-5} \text{ moles radium-} 223 \text{ left}$ (3)

 $1.25 \times 10^{-5} \times 6.0 \times 10^{23} = 7.5 \times 10^{18}$ atoms of radium–223 (3)

or

 $1.0 \times 10^{-4} \times 6.0 \times 10^{23} = 6.0 \times 10^{19}$ atoms of radium–223 initially (3)

 $\frac{6 \times 10^{19} \times 12.5}{100} = 7.5 \times 10^{18} \text{ atoms radium-} 223 \text{ left}$ (3)

or

 $\frac{1 \times 10^{-4} \times 87.5}{100} = 8.75 \times 10^{-5}$ moles radium-223 decayed

 $1.0 \times 10^{-4} - 8.75 \times 10^{-5} = 1.25 \times 10^{-5}$ moles radium-223 left (3)

 $1.25 \times 10^{-5} \times 6.0 \times 10^{23} = 7.5 \times 10^{18}$ atoms of radium-223 (3)

ΟI

 $1.0 \times 10^{-4} \times 6.0 \times 10^{23} = 6.0 \times 10^{19}$ atoms of radium-223 initially (3)

 $\frac{6\times10^{19}\times87.5}{100}~=5.25\times10^{19}~atoms~radium–223~decayed$

 $6.0 \times 10^{19} - 5.25 \times 10^{19} = 7.5 \times 10^{18}$ atoms radium-223 left (3)

Question 2 (2015 - Section B - Question 4 - Part c)

(c) WHAT: a neutron changes into a proton / ${}_{0}^{1}n \rightarrow {}_{1}^{1}p$ //

and an electron $(+e^{-})$ that is emitted (2×3)

['Proton (atomic) number increases by one' is allowable for (3) if no other mark awarded.]

['Beta-particle emitted' is not acceptable.]

[Accept for (6) 'a positron is emitted when a proton changes into neutron'.]

Question 3 (2014 - Section B - Question 4 - Part (c))

(c) WRITE: ${}^{223}_{87}\text{Fr} \rightarrow {}^{223}_{88}\text{Ra} / + {}^{0}_{-1}e$ (2 × 3)

[Allow if francium not written.] [Accept β instead of e.][Beta-particle as reactant not acceptable unless placed with a minus sign after Fr on the left.]

Question 4 (2013 - Section B - Question 10 - Part (c))

(c) (i) DEFINE: spontaneous random decay of (disintegration of, decomposition of, breaking

up of, change within) a nucleus* releasing α , β or γ radiation

or

spontaneous random emission of radiation (radiant energy, rays, particles)

from unstable nuclei due to decay of (disintegration of, etc.) a nucleus* (6)

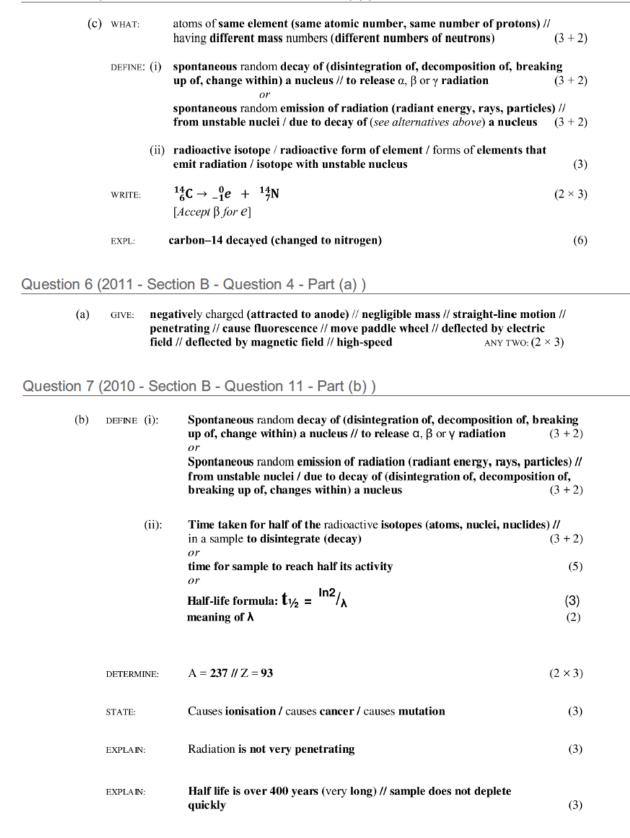
[* Do not accept "atom" for "nucleus".]

(ii) GIVE: chemical: involves electrons // no change to nucleus {no release of nuclear energy (radiation, rays, particles)} // bonds (named bonds, molecules) broken (formed) //

(radiation, rays, particles)} // bonds (named bonds, molecules) broken (formed) // elements unchanged (not transmuted) // mass conserved // energy comes from bonds

<code>nuclear</code>: electron cloud (electrons) not involved // nuclear change {release of energy (radiation, rays, particles) from nucleus} // no bond breaking (forming) // new elements (transmutation) // mass not conserved // energy comes from mass

[Point given for chemical, assume opposite for nuclear, & vice versa.] ANY TWO: (2×3)


(iii) GIVE: negative* (minus, -) charge // negligible mass (mass of electron) // high speed // moderately penetrating (less penetrating than γ , more penetrating than α ,

penetrate skin, penetrate paper, stopped by 2-5 mm (thin sheet of) aluminium) // moderately ionising (less ionising than α , more ionising than γ) // damage body cells (organs) DNA, cause cancer, cause mutations) // deflected by electric fields // deflected by magnetic fields // cause electroluminescence (fluorescence,

phosphorescence) [*Allow "positive" but only if positron is mentioned.] ANY TWO: (2×3)

(iv) WHAT: one-eighth /
$$\frac{1}{8}$$
 / 0.125 / 12.5% [Accept 0.994 or 99.4% or $\frac{994}{1000}$ (7)]

Question 5 (2011 - Section B - Question 10 - Part (c))

Question 8 (2006 - Section B - Question 4 - Part (c))

(c) involves nucleus of atoms not electron cloud (electrons) / involves break-up of nucleus / no breaking (forming) of chemical bonds (or named chemical bonds, or molecules) / chemical involves electrons only // involves new elements being generated (made, formed, produced) / transmutation // involves large scale release of energy from nucleus // involve the release of nuclear radiation (α , β or γ rays) // mass not conserved in nuclear (2×3)

Question 9 (2004 - Section B - Question 11 - Part (a))

- (a) DEFINE: spontaneous (random) emission of radiation (radiant energy, rays)

 [Accept '...of α, β and γ particles' but not '...particles' on its own]

 from unstable nuclei / [Allow due to disintegration (breaking up, decomposition) of nuclei] (3)
 - (i) negative (minus) charge / negligible (around 1 / $_{1840}$ or 0.00054) mass / high speed / more penetrating than α (less penetrating than γ , stopped by 2 5 mm (sheet of) aluminium, moderately penetrating) / less ionising than α (more ionising than γ , moderately ionising) / damage body cells (cause cancer) / electrons from nucleus / deflected by electric fields / deflected by magnetic fields /fluorescence / phosphorescence

 - (iii) In living things, the ratio of carbon-12 to carbon-14 is constant (same as in air)

 [Accept 'C-14 constant during life' or 'C-14 replaced (taken in) during life']

 After death, carbon-14 decays and the changed ratio and the half-life used to find age /

 decrease in carbon-14 related to time passed since death

 (4)

Question 10 (2003 - Section B - Question 4 - Part (f))

(f) alpha, beta, gamma / alpha beta gamma / beta alpha / clear correct description of order of penetration (6)