Stoichiometry I

Question 1 (2015 - Section B - Question 4 - Part (e))

(e) DEDUCE: Cu₃N

(6)

(3)

$$\frac{19.05}{63.5} = 0.300 =$$
0.3 moles; $\frac{1.4}{14} = 0.10 =$ **0.1** moles $/ = > 3 : 1$ (3)

=> Cu₃N

Question 2 (2014 - Section B - Question 11 - Part (b))

(b) (i) HOW MANY: 0.05 mol

(6)

$$M_{\rm r} = 252 \,(3)$$
 $\frac{12.6}{252} = 0.05 \,\text{mol} \,(3)$

(ii) MASS: 7.6 g

(6)

0.05 mol
$$\rightarrow$$
 0.05 mol (3) 0.05 \times 152 = **7.6** g (3)

(iii) VOLUME: 1.1

$$1.12 \text{ 1/} 1120 \text{ cm}^3 / 1.12 \times 10^{-3} \text{ m}^3$$

(6)

0.05 mol → **0.05** mol (3)

$$0.05 \times 22.4 = 1.121 / 0.05 \times 22,400 = 1,120 \text{ cm}^3$$
 (3)

(iv) NUMBER:

$$1.2 \times 10^{23}$$

(4)

$$0.05 \text{ mol} \rightarrow 0.2 \text{ mol}$$
 (2) $0.2 \times 6 \times 10^{23} = 1.2 \times 10^{23}$ (2)

HOW MANY: 3.6×10^{23}

(3)

$$3 \times 1.2 \times 10^{23} = 3.6 \times 10^{23} \tag{3}$$

Question 3 (2014 - Section B - Question 4 - Part (g))

(g) FIND: SO_3

(6)

$$\frac{40}{32} = 1.25;$$
 $\frac{60}{16} = 3.75 / 1:3$ (3)

Question 4 (2014 - Section B - Question 4 - Part (h))

(6)

$$\frac{0.15}{127} / 0.00118 / 0.0012 // \qquad \frac{166}{127} = 1.31 // \qquad \frac{127}{166} \times 100 = 76.51\% // \qquad (3)$$

$$\times 166 = 0.196 \qquad \times 0.15 = 0.196 \qquad 0.15 \div 0.7651 = 0.196 \qquad (3)$$

[Unit 'mg' not required.][Accept $1.96 - 1.99 \times 10^{-4}$ g but deduct 1 mark if unit omitted.]

Question 5 (2013 - Section B - Question 4 - Part (e))

(e) WHEN: CuO

(6)

mass of copper = 1.27 g; mass of oxygen = 1.59 – 1.27 = 0.32

$$\frac{1.27}{63.5} = 0.02$$
; $\frac{0.32}{16} = 0.02$ (3)
 \Rightarrow empirical formula = CuO (3)

Question 6 (2010 - Section B - Question 4 - Part (d))

(d) GIVE: 2.6×10^{19}

(6)

$$0.0024 \div 56 = 4.29 \times 10^{-5}$$
 moles of iron (3)
 $4.29 \times 10^{-5} \times 6 \times 10^{23} = 2.6 \times 10^{19}$ atoms (3)

Question 7 (2007 - Section B - Question 4 - Part (e)

(e) INTAKE:
$$1.5 \times 10^{20}$$

$$\begin{array}{l}
 \begin{array}{l}
 00 \\
 \hline
 0.014 \div 56 = 0.00025 \quad (3) \quad \times 6 \times 10^{23} = 1.5 \times 10^{20} \quad (3) \quad \times 2 \, (-3)
\end{array}$$

Question 8 (2007 - Section B - Question 4 - Part (h))

$$\frac{21.5}{500}$$
 (3) x 100 = 4.3 (3)

(6)

Question 9 (2005 - Section B - Question 4 - Part (h))

(h)
$$CuCl_2$$
 (6) $Cu = 3.175 \div 63.5 = 0.05$; $Cl = (6.725 - 3.175) \div 35.5 = 0.1$ (3) Ratio $Cu : Cl = 0.05 : 0.1 = 1 : 2$ (3)

Question 10 (2005 - Section B - Question 4 - Part (j))

(j)
$$C_2H_5OH + Na \longrightarrow C_2H_5ONa + \frac{1}{2}H_2 / 2C_2H_5OH + 2Na \longrightarrow 2C_2H_5ONa + H_2$$
 FORM: (3) BAL: (3) [Allow 3 marks for correct formula for the organic product]

Question 11 (2004 - Section B - Question 4 - Part (h))

(h) 70 % [No penalty incurred if A, values from Periodic Table used] (6)

 $\frac{112}{160}$ (3) \times 100 = 70 (3)

Question 12 (2003 - Section B - Question 4 - Part (g))

(g) 35% (6) formula mass = 80 mass of nitrogen = 28 $\frac{28 \times 100}{80}$ (3) = 35 (3)