The Mole Concept

Question 1 (2016 - Question 11 - Part a)

(a) (i) WHICH: sulfur (S)

(1)

(12)

WHAT: **16** g S $\frac{20.2}{101^*} =$ **0.2** $\text{ moles KNO}_3 \quad (3)$ $\frac{24.0}{32} =$ **0.75** $\text{ moles S} \quad (3)$

and

$\frac{0.2 \times 5}{4} = 0.25$ moles S required to react with 0.2 moles KNO ₃	(2)
0.75 - 0.25 = 0.5(0) moles S unused (in excess)	(2)
$0.5 \times 32 = 16$ g S unused	(2)

or

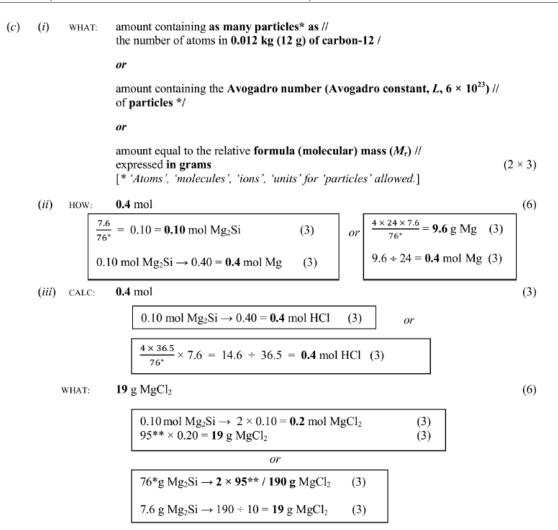
$\frac{0.75 \times 4}{5} = 0.6(0)$ moles KNO ₃ required to react with 0.75 moles S			
$\Rightarrow 0.2$ moles KNO ₃ limiting			
$\frac{0.2 \times 5}{4} = 0.25$ moles S required to react with 0.2 moles KNO ₃	(2)		
0.75 - 0.25 = 0.5(0) moles S unused (in excess)	(2)		
$0.5 \times 32 = 16 \text{ g S unused}$	(2)		

or

$\frac{0.2}{4} < \frac{0.75}{5} / 0.05 < 0.15$	\Rightarrow 0.2 moles KNO ₃ limiting	
$\frac{0.2 \times 5}{4} = 0.25$ moles S required to r	react with 0.2 moles KNO ₃	(2)
0.75 - 0.25 = 0.5(0) moles S unus	ed (in excess)	(2)
$0.5 \times 32 = 16$ g S unused		(2)

(ii) CALCULATE: 7.84 litres

$$\frac{0.2 \times 7}{4} / \frac{0.2 \times 2}{4} + \frac{0.2 \times 5}{4} = 0.35 \text{ moles gas}$$
(3)
$$0.35 \times 22.4 = 7.84 \text{ litres}$$
(3)


[Award final answer of **2.24** litres **and 5.60** litres (5)] [Use of 24 L as molar volume not acceptable here.]

WHAT: 9.4 g K₂O

$\frac{0.2 \times 2}{4} = 0.1 \text{ moles } K_2O$ 94* × 0.1 = 9.4 g K ₂ O	(3)
$94^{*} \times 0.1 = 9.4 \text{ g K}_2\text{O}$	(3)

[*Addition must be shown for error to be treated as slip.]

```
Question 2 (2015 - Section B - Question 10 - Part c)
```


(6)

(*iv*) WHAT: **4.8** litres (**4,800** cm³)

$$\frac{or}{76^* \text{g Mg}_2 \text{Si} \rightarrow 2 \times 24 / 48 \text{ L O}_2}$$
(2)
7.6 g Mg₂Si → $\frac{48}{76^*} \times 7.6 = 4.8 \text{ L O}_2$ (2)

[Use of 22.4 L as molar volume not acceptable here.]

[*Addition must be shown for error to be treated as slip.] [**Addition must be shown for error to be treated as slip.]

[1 mark deducted for incorrect rounding off, once only.]

(f) WHAT: amount containing as many particles* as // the number of atoms in 0.012 kg (12 g) of carbon-12/

or

amount containing the Avogadro number (Avogadro constant, L, 6×10^{23}) // of particles /

or

amount equal to the relative formula (molecular) mass (M_r) // expressed in grams (2×3) [*Allow 'atoms', 'molecules', 'ions', 'units' for 'particles'.]

Question 4 (2008 - Section B - Question 11 - Part (b))

(b)	(i)	MASS:	1144 g			(6)	
	(ii)	MOLES:	26 mol	$143 \times 8 = 1144 (6)$ $1144 \div 44 (3) = 26 (3)$	To be accepted as a slip, s must be shown in these ca		
	(iii)	VOLUME:	624 1	$26 \times 24(3) = 624(3)$		(6)	
		SUV:	528 1			(7)	
	264	x 8 ÷ 44 x 2	4 = 1152 (4)	264 - 143 = 121 (3)	2112 - 1144 = 968 (3)	48 - 26 = 22 (3)	
	115	52 - 624 = 52	28 (3)	$121 \times 8 \div 44 \times 24 = 528 (4)$	$968 \div 44 \ge 24 = 528 (4)$	$22 \times 24 = 528 (4)$	
	[Note: subtraction step (3): other step(s) (4)]						

[Note: subtraction step (3); other step(s) (4)]

[In part (iii), using 22.4 for 24 loses the 3 (4) marks for that step but the candidate is penalised once only. The same applies to the use of PV = nRT except in cases where the correct answer is obtained.]