Trends in the Periodic Table

Question 1 (2015 - Section B - Question 11 - Part a)

	STION 11		
(<i>a</i>)	DEFINE:	relative (measure of force of, number expressing the) attraction that an atom h for shared pair of electrons / for electrons in a covalent bond	(2×3)
	WHY:	nuclear charge (number of protons, atomic number, number of positive particles nucleus) increasing //	
		atomic radius decreasing	(2×3)
	EXPLAIN:	predicted the properties from properties of known elements / predicted the proper properties of elements in same group (column, family)	ties from (6)
		or or	
	having arranged (placed) elements in order of increasing atomic we where elements with similar properties were arranged in columns (left gaps in his table for elements with certain properties yet to be disco		~
			(3 only)
	WRITE:	GeH ₄	(3)
	WOULD:	no // GeH ₄ a non-polar (slightly polar) solute / insoluble in water like methane (CH SiH ₄) [Second (2) only available if first (2) is awarded.]	4, silane, (2 × 2)

Question 2 (2015 - Section B - Question 4 - Part h)

(h) IDENTIFY: (i) sodium (Na) // (ii) beryllium (Be)

(2 × 3)

(b)	DEFINE:	the minimum energy required to remove the most loosely-bound (outermost) electron // from an isolated (gaseous) atom in its ground state / from one mole of isolated	
			(2 × 3)
	EXPLAIN:	 (i) greater nuclear charge / greater number protons in nucleus // smaller atomic radius ['Greater atomic number' not acceptable.] 	(2 × 3)
		(<i>ii</i>) greater atomic radius / most loosely-bound (outermost) electron farther nucleus / most loosely-bound (outermost) electron more shielded from n	ucleus
		['More shells' acceptable.]	(3)
(c)	EXPLAIN:	there are three groups of ionisations (electrons, points) with gradual (small) energy differences between them because they involve electrons in the same energy level (shell) //	
		there are two bigger energy differences (jumps) between these groups of ionisations (electrons, points) because the three energy levels have significantly different discrete (fixed, restricted, definite, specific) energies	(2×3)
		or	(2 × 3)
		sharp (bigger) increase (jump) in ionisation energy for 5 th (from 4 th to 5 th) electr showing that this is the first electron to be removed from 2 nd ($n = 2$, new, full, new another) main level (shell) //	
		sharp (bigger) increase (jump) in ionisation energy for 13^{th} (from 12^{th} to 13^{th}) eleshowing that this is the first electron to be removed from 1^{st} ($n = 1$, new, full, new another) main level (shell) //	
		gradual (small) increase for first four electrons, therefore in same main level (sh gradual (small) increase from 5 th to 12 th electrons, therefore in same main level gradual (small) increase from 13 th to 14 th electrons, therefore in same main level ANY TWO:	(shell) / (shell)
		[Responses here must make sense and not just contain the correct phrases – beware of <i>incorrect</i> use of sublevel and orbital.]	•
	OTHER:	line emission (absorption) spectra of elements	(3)

QUESTION 11: Answer any *two* of the parts (a), (b) and (c).

(a)	DEFINE:		minimum energy to remove most loosely-bound (highest energy, outermost) electron //	
			from an isolated (gaseous) atom in its ground (lowest energy) state / from 1 mole of isolated (gaseous) atoms in their ground (lowest energy) state	(4 + 3)
	(i)	DEDUCE:	<i>B</i> is helium // <i>P</i> is sulfur (sulphur)	(2 × 3)
		WHAT:	900	(3)
	(ii)	WHAT:	R (argon) has (by losing an electron S (potassium) gets) stable outer octet of {noble gas configuration, full outer sublevel (subshell), outer $3p^6$ } / S has of electron further from nucleus {in a new main level (shell), / S more screene S's electron removed from next (4 th) main level (shell) / S has one electron i outer main level (shell) ["R has full outer shell" (0 marks) but doesn't cancel a correct point]	outer ed} /
	(iii)	EXPLAIN:	a half-full p sublevel has associated stability / paired electrons in a p orbital unstable //	I
			H (oxygen) has lower first ionisation energy (loses electron more easily) becau a less stable electron configuration than G / is one electron above (away fro stability / $2p_x^2 2p_y^{-1} 2p_z^{-1}$ or $2p^4$ or $2p$ $\downarrow\uparrow$ \downarrow \downarrow / loss of electron from H gives half-full $2p$	
			G (nitrogen) has higher first ionisation energy (loses electron less easily) becau	ise it has

G (nitrogen) has higher first ionisation energy (loses electron less easily) because it has a more stable electron configuration than H / $2p_x^{\ 1}2p_y^{\ 1}2p_z^{\ 1}$ or $2p^3$ or 2p $\downarrow \downarrow \downarrow \downarrow$ / half-full 2*p*-sublevel / (2 × 3)

Question 5 (2012 - Section B - Question 5 - Part (b) - (e))

(b)	(b) DEFINE:		half internuclear distance (half distance between the centres of the atoms) in a single homonuclear bond (of singly-bonded atoms of the same element)	
	STA	TE:	decrease in atomic radius	(3)
	EXPLAIN:		increase in effective nuclear charge (number of protons)	(3)
(c) REASON: increase in nuclear charge (number of protons) /		SON:	increase in nuclear charge (number of protons) / decrease in atomic radius	(3)
(d)	(i)	STATE:	\mathbf{PH}_3 virtually non-polar (pure covalent) but the other three are polar covalent	(3)
		WHAT:	tiny (no) electronegativity difference in PH ₃ (between P and H) but much bigger electronegativity differences in the other three.	(3)
	(ii)	FROM:	H₂O // NH₃ [Award 6 marks if H ₂ O, NH ₃ and HCl offered]	(2 × 3)
		GIVE:	melting point / boiling point / surface tension / capillarity / specific heat / latent heat of fusion / latent heat of vaporisation / density / solubility in water	(3)
	(iii)	SHAPE:	pyramidal	(3)
		EXPL:	repulsion between four electron pairs (e.p.), one a lone pair (l.p.) / H	
			repulsion between three bonds (bond pairs, b.p.) and a (one) lone pair (l.p.)	(3)
(e)	wot	JLD:	(i) B – Cl bond: polar // (ii) BCl ₃ molecule: non-polar	(2 × 3)
	JUST	TIFY:	unequal sharing of electrons (el. neg. difference) between B and Cl (polarity of be	nds)
			cancels due to symmetry of molecule(s) / centres of positive and negative charge coincide	(3)

Question 6 (2005 - Section B - Question 10 - Part (b))

(b) (i)	IDENTIFY:	first ionisation energy / first ionisation potential [Allow 3 marks for ionisation energy (potential)]	(4)
	STATE:	kilojoules per mole (kJ mol ⁻¹) / joules per mole (J mol ⁻¹) / electron volt(s) (eV)	(3)
(ii)	EQUATION:	$X_{(g)} \longrightarrow X^{+}_{(g)} + e^{-} / X_{(g)} - e^{-} \longrightarrow X^{+}_{(g)}$ [Allow (3) for equation given without state symbols]	(6)
(iii)	WOULD:	less	(3)
	EXPLAIN:	already gained energy (partially removed) / already raised to higher level / already excited /further from nucleus [The (3) for EXPLAIN cannot be awarded if the answer to WOULD is incorrect]	(3)
(iv)	HOW:	very / quite / fairly / reactive	(3)
	REACT:	by losing electron(s) / oxidised / becoming positively charged	(3)