pH and Indicators Marking Scheme

2017

Q9

QUE (a)	STION 9 DEFINE:	(i) proton (H+) acceptor // (ii) two species that differ by a proton (H+) [Examples insufficient on their own.] (2 × 3)	
	WHAT:	H₃O⁺ / hydronium ion (3)	
(b)	DEFINE:	pH = $-log_{10}$ [H ⁺] / $-log_{10}$ [H ₃ O ⁺] / minus log base 10 hydrogen ion concentration expressed in moles per litre (3)	
	ACCOUNT:	[Allow 'hydrochloric' for HCI, 'sulfuric' for H_2SO_4 and 'methanoic' for HCOOH. Allow H^+ , proton, H_3O^+ or hydronium ion for' hydrogen ion'.]	
	(i) & (ii)	First (9) marks available from one of the boxes below.	
		RELEVANT HCl information 0.10 M HCl produces 0.10 M H ⁺ ion / pH HCl = -log (0.10) or (6)	
		HCI monoprotic (monobasic) / one molecule HCI produces one H ⁺ ion // HCI is strong (fully dissociated into H ⁺ ions, a good proton donor) (2 × 3) and RELEVANT H ₂ SO ₄ information	
		0.10 M H ₂ SO ₄ produces 0.20 M H ⁺ ion / pH H ₂ SO ₄ = -log (0.20) /	
		H ₂ SO ₄ diprotic (dibasic) / one molecule H ₂ SO ₄ produces two H ⁺ ions / H ₂ SO ₄ produces (has) more (twice as many) H ⁺ ions as HCl (3)	
		or	
		RELEVANT H_2SO_4 information 0.10 M H_2SO_4 produces 0.20 M H^+ ion / pH H_2SO_4 = $-log$ (0.20) or H_2SO_4 diprotic (dibasic) /	

one molecule H₂SO₄ produces two H⁺ ions /

H₂SO₄ produces (has) more (twice as many) H⁺ ions as HCl

0.10 M HCl produces 0.10 M H⁺ ion / pH HCl = -log (0.10)

and

and

RELEVANT HCl information

RELEVANT HCOOH information
0.10 M methanoic acid (HCOOH) solution produces 4.27 × 10⁻³ M (less than
0.10 M) H⁺ ion /
pH HCOOH = inverse log (-2.37) {antilog (-2.37)} /
HCOOH is weak {slightly (not fully) dissociated into H⁺ ions, a poor proton donor} /
HCOOH weaker than HCI
(3)

(3)

(3)

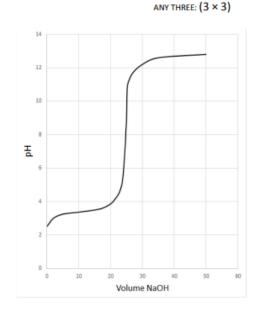
USE: (iii) $K_a = 1.82 \times 10^{-4}$ (6)

[H⁺] = inverse log (-2.37) */ antilog (-2.37) * / 4.27×10^{-3} / $10^{-2.37}$ *Omission of minus loses this (3)

$$\Rightarrow K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{A}^{-}]}{[\mathrm{HA}]} \left(\frac{[\mathrm{H}^{+}]^{2}}{[\mathrm{HA}]} , \frac{[\mathrm{H}^{+}]^{2}}{[0.1]} \right) / \\ [\mathrm{H}^{+}] = \sqrt{K_{a}[\mathrm{HA}]} / 4.27 \times 10^{-3} = \sqrt{K_{a}[0.1]} / [\mathrm{H}^{+}]^{2} = K_{a}[\mathrm{HA}] / (4.27 \times 10^{-3})^{2} = K_{a}(0.1)]$$

$$K_a = 1.82 \times 10^{-4}$$
 (3)

 $[acid] = [HA] = [HX] = M = M_a$


$$(iv)$$
 pH = **2.5**2 (3)

pH =
$$-\log \sqrt{K_a[\text{HA}]}$$
*= $-\log \sqrt{1.82 \times 10^{-4}[0.05]}$ * = **2.5**2 (3) *Omission of minus loses this (3)

 $[acid] = [HA] = [HX] = M = M_a$

(c) DRAW: axes labelled (pH and volume) //
curve of correct shape with steep rise at 25 cm³ //
vertical part mostly above pH = 7 //
steep rise coincides with 25 cm³ NaOH

[Allow correct work with volume scale increasing from right to left or pH decreasing on y-axis towards 0.]
[Allow volume on y-axis.]

NAME: phenolphthalein (6)

colour change (indicator range) coincides with sharp rise on graph /
colour change occurs > 7 /colour change occurs between 7 and 10 /
indicator range is 8.3 – 10

[NAME and EXPLAIN linked]

(2)

QUESTION 10

(a) (i) DISTNG:

stong acid: good proton donor / readily donates protons / almost fully dissociated //

weak acid: poor proton donor / slightly (poorly, weakly) dissociated (2×3) [Allow 'Partly (partially, not fully) dissociated' and 'does not readily donate protons' for weak acid description.]

(ii) CALCULATE: 0.005 M

(6)

(3)

$$pH = -log[H^+] \Rightarrow [H^+] = inverse log(-2) = 0.01$$
 (3)

$$0.01 \div 2 \text{ (dibasic)} = 0.005 \text{ M}$$

CALCULATE:
$$5/9 (0.556) M [0.55 - 0.56 M]$$
 (6)

pH=
$$-\log [H^+] \Rightarrow [H^+] = \text{inverse log } (-2) = 0.01$$

$$\Rightarrow K_{a} (1.8 \times 10^{-4}) = \frac{[H^{+}][A^{-}]}{[HA]} \left(\frac{[H^{+}]^{2}}{[HA]}, \frac{(0.01)^{2}}{[HA]} \right) / [HA] = \frac{(0.01)^{2}}{1.8 \times 10^{-4}} / [HA] = \frac{(0.01)^{2}}{Ka} / [HA] = \frac{(0.01)^$$

$$[HA] = 5/9 (0.55555) M [0.5556 - 0.56 M]$$
 (3)

 $[acid] = [HA] = [HX] = M = M_a$

(iii) DEFINE: $K_{\rm w} = [{\bf H}^+][{\bf OH}^-] \ / \ K_{\rm w} = [{\bf H}_3{\bf O}^+][{\bf OH}^-] \ / \ {\bf product\ of\ molar\ concentrations\ of\ hydrogen\ (hydronium)\ ions\ ({\bf H}^+, {\bf H}_3{\bf O}^+)\ and\ hydroxide\ (hydroxyl)\ ions\ ({\bf OH}^-)\ in\ water \eqno(3)$

WHAT: $3.0 \times 10^{-7} \text{ M}$ (4)

$$K_{\rm w} (9.0 \times 10^{-14}) = [{\rm H}^+]^2 / [{\rm H}^+] = \sqrt{K_{\rm w}} (\sqrt{9.0 \times 10^{-14}}) / [{\rm H}^+] = [{\rm OH}^-]$$

 $\Rightarrow [{\rm H}^+] = 3.0 \times 10^{-7} {\rm M}$ (4)

QUESTION 9

- (a) DEFINE: (i) Arrhenius acid: produces H⁺ (hydrogen ion) by dissociation in water (aqueous solution) //
 (ii) Brønsted-Lowry acid: proton (hydrogen ion, H⁺) donor (2 × 3)
- (b) DEFINE: $-\log_{10}[H^+]/-\log_{10}[H_3O^+]/$ negative log to base ten of hydrogen (hydronium) ion concentration in moles per litre (6)

reliable (accurate, suitable) only for dilute solutions / only valid (useful) in 0 - 14 range / applies to aqueous solutions only / unreliable (inaccurate, unsuitable) in very concentrated solutions / unreliable for negative pH values

['Temperature dependent / (25 °C)' acceptable.] ['Valid range 1 - 14' unacceptable but

does not cancel.]

(c) GRAPH: See graph on next page.

both axes correctly labelled (pH, V, volume, cm³, NaOH)

appropriate, correct numeric scales on both axes

smooth curve of correct shape corresponding to 0 -15 cm³ NaOH added and from

25 40 cm³ NaOH added

(2)

25- 40 cm³ NaOH added (3) careful plotting of vertical part (6)

[Volume versus pH acceptable.][(3) marks deducted if graph not on graph paper.]

$$[H^{+}] = \sqrt{K_{a}[CH_{3}COOH]} / \text{inverse log } (-3.3) / 5.01 \times 10^{-4} / \\ -log\sqrt{K_{a}[CH_{3}COOH]} = 3.3 / log\sqrt{K_{a}[CH_{3}COOH]} = -3.3$$
(6)
$$K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} / \frac{[H^{+}]^{2}}{[CH_{3}COOH]} / 1.8 \times 10^{-5} = \frac{[5.01 \times 10^{-4}]^{2}}{[CH_{3}COOH]}$$

$$[CH_{3}COOH] = 0.014 \text{ M} \quad [0.0139 - 0.014 \text{ M}]$$

$$Take [acid] \text{ or } [HA] \text{ or } M \text{ to be } [CH_{3}COOH] \text{ and } [A^{-}] \text{ to be } [CH_{3}COO^{-}]$$

or

$$[H^{+}] = \sqrt{K_{a}[CH_{3}COOH] / \text{inverse log } (-3.3) / 5.01 \times 10^{-4} / \\ -\log\sqrt{K_{a}[CH_{3}COOH]} = 3.3 / \log\sqrt{K_{a}[CH_{3}COOH]} = -3.3$$

$$(6)$$

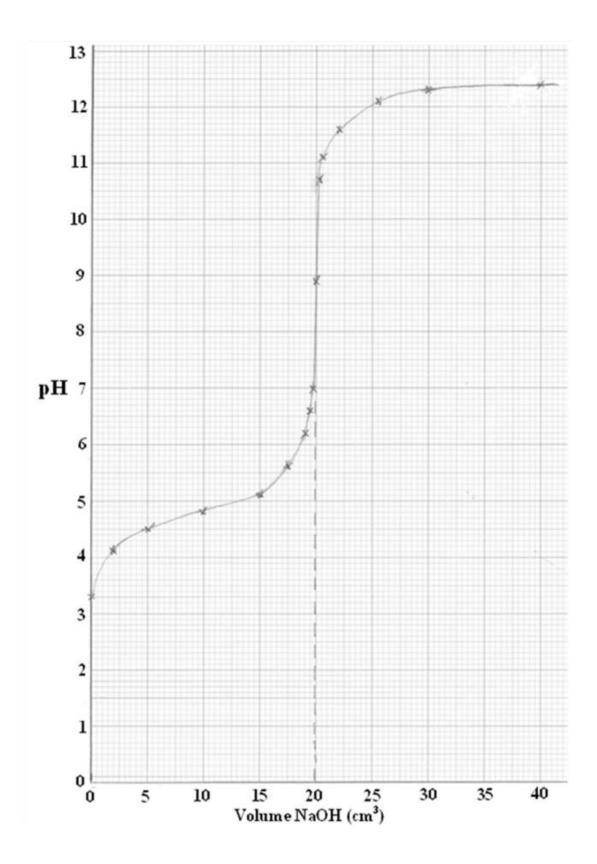
$$K_{a}[CH_{3}COOH] / 1.8 \times 10^{-5} \times [CH_{3}COOH] = (5.01 \times 10^{-4})^{2}$$

$$[CH_{3}COOH] = \frac{(5.01 \times 10^{-4})^{2}}{1.8 \times 10^{-5}} = \frac{2.51 \times 10^{-7}}{1.8 \times 10^{-5}} = 0.014 \quad [0.0139 - 0.014 \text{ M}]$$

$$Take [acid] \text{ or } [HA] \text{ or } M \text{ to be } [CH_{3}COOH] \text{ and } [A^{-}] \text{ to be } [CH_{3}COOT]$$

[1 mark deducted for incorrect rounding off.]

(ii) MAKE USE:
$$20 \text{ cm}^3$$
 (3)


(e) WHAT: phenolphthalein / thymol blue / cresol purple / thymolphthalein (6)

[REFER marks available only if WHAT marks awarded.]

range of phenolphthalein coincides with vertical part of graph / range (8 -10) within pH jump / phenolphthalein changes colour corresponding to steep (vertical) part of graph / phenolphthalein changes colour within (coinciding with) pH jump at end point / phenolphthalein has one colour at pH = 8 (7, 6, before neutralisation, before vertical part of graph) and another at (after) pH = 10 (11, after neutralisation, after vertical part of graph)

[K_a (K_{ln} , pK_a , pK_{ln}) value of phenolphthalein acceptable for (4).]

classroomchemistry.com

